Загадка Ньютона

Загадка Ньютона

Предположим, что есть некоторый луг, на котором трава растет одинаково густо и быстро. Предположим также, что если на лугу будут пастись коровы, то они будут поедать траву равномерно. Сколько коров должно пастись на лугу, чтобы съесть всю траву за 96 дней, если известно, что 70 коров поедают ее за 24 дня, а 30 коров — за 60 дней?

Ответ на загадку:
Назовем суточное потребление травы одной коровой порцией. Тогда 70 коров съедают за 24 дня 70-24= 1680 порций. Сюда входят начальное количество травы на лугу и прирост ее за 24 дня.
Тридцать коров за 60 дней съедают 1800 порций. Это количество порций равно начальному количеству травы и приросту се за 60 дней.
Прирост травы за 60 дней больше прироста за 24 дня на 120 порций (1800— 1680= 120), т. е. за 36 суток прирост равен 120 порциям. Отсюда прирост травы за 24 дня будет равен 80 порциям. Начальный «запас» травы равен:
1680 — 80= 1600 порций.
Прирост травы за 96 дней будет в четыре раза больше прироста ее за 24 дня, так как трава растет равномерно, и составит 320 порций. Таким образом, коровы должны съесть за 96 дней 1600 + 320= 1920 порций.
В сутки они должны съедать
1920:96=20 порций,
а значит, в стаде должно быть 20 коров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

После отправки комментарий появляется не сразу, а после модерации!

и ещё...Знаешь хорошую загадку? Жми!
Прислать загадкy!